| Angle Formulas Reference Chart
| To Find
 | Known Parts
 | Formula | Alternate Formula
 |  
| A | C & D | C x SIN D = A |  |  
| A | C & E | C x COS E = A |  |  
| A | B & D | B x TAN D = A |  |  
| A | B & E | B x COT E = A |  |  
| A | C & B | √(C2 - B2) = A |  |  
| B | C & D | C x COS D = B |  |  
| B | C & E | C x SIN E = B |  |  
| B | A & D | A x COT D = B |  |  
| B | A & E | A x TAN E = B |  |  
| B | C & A | √(C2 - A2) = B |  |  
| C | A & D | A x COSEC D = C |  |  
| C | A & E | A x SEC E = C |  |  
| C | B & E | B x COSEC E = C |  |  
| C | B & D | B x SEC D = C |  |  
| C | A & B | √(A2 + B2) = C |  |  
| D | A & C |  |  |  
| D | B & C |  |  |  
| D | A & B |  |  |  
| D | E | 90° - E° = D° |  |  
| E | B & C |  |  |  
| E | A & C |  |  |  
| E | A & B |  |  |  
| E | D | 90° - D° = E° |  |  
| AREA | A & B |  |  |  
| AREA | A & D |  |  |  
| AREA | B & D |  |  |  
| AREA | C & D |  |  |  
 
 Oblique Triangles 
| To Find
 | Known Parts
 | Formula |  
| A | B-D-E |  |  
| B | A-D-E |  |  
| C | A-F-E |  |  
| C | B-F-D |  |  
| D | E & F | 180° - (E° + F°) = D° |  
| D | A-B-F | | B x SIN F A - (B x COS F)
 | = TAN D | 
 |  
| D | A-B-C | | C2 + A2 - B2 2 x C x A
 | = COS D | 
 |  
| D | A-B-E |  |  
| E | D & F | 180° - (D° + F° = E° |  
| E | A-B-F | | B x COSEC F A
 | - COT F = COT E | 
 |  
| E | A-C-F |  |  
| E | A-B-D |  |  
| F | D & E | 180° - (D° + E°) = F° |  
| F | C-D-B |  |  
| AREA | A-B-F |  |  
 
 Formulas for FindingFunctions of Angles
 
|  | = SINE |  
|  | = COSINE |  
| | Side opposite Side adjacent
 |  | 
 | = TANGENT |  
| | Side adjacent Side opposite
 |  | 
 | = COTANGENT |  
|  | = SECANT |  
|  | = COSECANT |  
 
 
 |